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Unusual Identities for Special Functions from
Waveguide Propagation Analyses

JAMES A. COCHRAN

Abstract —The analysis of electromagentic wave propagation in “cylin-
drical” waveguides with step discontinuities leads naturally to sets of
unusual identities for various special functions. In this paper we con-
centrate on those expressions associated with classical rectangular and
circular cross-sectional geometry. From a mathematical point of view it
turns out, as expected, that the identities are related to bilinear expansions
for Green’s functions affiliated with familiar Sturm-Liouville boundary-
value problems.

I. INTRODUCTION

The three-dimensional scalar wave equation is separable in 11
distinct coordinate systems [7]. Several of these, including rectan-
gular, cylindrical, elliptic, and parabolic, are of the form (¢, 9, z),
thereby allowing the ready analysis of electromagnetic propa-
gation in “cylindrical” waveguides having a general cross section
given by f(§,n)=0. If k®=w?ue where, as usual, @ is the
radian frequency of the assumed harmonic time dependence and
p and e are the permeability and permittivity of the homoge-
neous isotropic linear medium within the waveguides, then zrans-
verse magnetic (TM) and transverse electric (TE) field solutions
have the well-known form [2, pp. 291 ff], [5, pp. 171 ff.]
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with (y¢)? = k2 ~(h°)?. In these expressions we assume that the
idealized boundary condition of vanishing tangential electric field
on the waveguide wall f({,n7)=0 has been applied so that
®(¢,m) and ¥({,n), respectively, are solutions of the following
eigenvalue problems:

V20 + ()P =0
®=0

-

Ee=7F

within waveghide

(32)

on waveguide wall

v2¥ +(h)*¥ =0  within waveguide
v '
= 0  onwaveguide wall. (3b)
n

Manuscript received May 9, 1987; revised September 28, 1987.

The author is with the Department of Mathematics, Washington State
University, Pullman, WA 99164-2930.

IEEE Log Number 8718870.

3, MARCH 1988 611

The problems (3a) and (3b) are classical Sturm-Liouville ei-
genvalue problems (see [6, pp. 228 ff.], for example). If f({,7) =0
is a piecewise-smooth simple curve (a contour) enclosing a
bounded domain, each problem has a countable infinity of posi-
tive eigenvalues. (We ignore the eigenvalue (h¢)% =0 since the
corresponding eigenfunction is ¥ = constant, which implies E =
H = 0.) Indeed, when the eigenvalues associated with each prob-
lem are arranged in order of increasing size, that is,

0< (k) <(h5)’ <(h)<---
and '

0<(h) < (hg) <(hy) <
it follows that

e )2 m)2
(h5) < (ny)
for each p=1,2,-- and lim, , , (k)* =lim, _, ,(A7)* = o0.
In our electromagnetic setting, the individual TM and TE

waves (modes) generated by the eigenfunctions of (3a) and (3b)
are independent, and their superposition leads to the most gen-

eral solution of Maxwell’s equations within the waveguide [2, p.
300]. Since

m,e 2 p— m,e 2
(ye) =k =(n7)
for a given frequency w only a finite number of modes of each
type are propagating. Whether propagating or evanescent, how-
ever, the transverse components of the modal fields satisfy the
familiar orthogonality relations

[ B, Eydd=o0 (4a)
A

[ B, H da=0 (4b)
A

La-(ﬁ'gxig*)dA=0. (4¢)
In these expressions, P designates the complex conjugate of F
and the integration is performed over the entire two-dimensional
waveguide cross section A. If the waves are of the same type,
then p # ¢ in (4a) and (4b). When p = ¢, the customary normal-
izations are [2, p. 300] '

f,, |Em2 dd =y (5)

and
JIES P dd = w2,
A

If two waveguides of cross sections A; and A4,, with 4, C 4,,
are joined in the plane z = constant, then, at the juncture, waves

- in the first guide excite waves in the second guide (and con-

versely). Matching transverse fields in the “aperture” A4,, we
have, using some obvious notation,

1e 2_)m_ 2 e
E&_Eq(apq th "bpq th)
15m _ 25m 25
E; "Eq(cpq Eg+dy, Eteq)'

(6)

Herc the coefficients a, b, ¢, d represent inner products between
individual modes in the two waveguides. For example,
}

b= —s [ B da
o,
rq w2u2 4, 4 q
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Owing to the orthogonal character of the modes, and their
normalizations, the representations (6) lead quite naturally to the
following set of identities:

Z [apnaqnl Yn + w l‘Lszn b;;,] = 0-)2[1«26}”7

Y[ apucq P4 +o?h,,d%] =0

n

Z [Cpn qnl2 ml tw ""zdpnd;n] Il I 8 (7)

n
There is a related set of identities which arises from expressing
modes in the second guide in terms of modes in the first guide.
We begin with the analogue of (6) in which the roles of the guides
are reversed. This representation is uniformly valid at least over
the “aperture” 4; and, in view of the relations (4) and (5), gives
rise to

Z a"pa"’k‘/ + C"p Vll] 2 m2 m|2 _,’_f 2Em 2Em dA
o P Yo Y
|2 ml
anpbn ¢ d e m*
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Pl R Sk
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2 '“7 nprq 4 4 2pe 2pe*
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;[ N ] g fArAl v
=w2p28pq. (8)

These latter expressions have a slightly different character than
the relations (7) since 4, € 4, and the modes in the first guide
do not generally constitute a basis for the modes in the second
guide over the whole of 4,. In both (7) and (8), however, §,,
represents the familiar Kronecker delta.

II. RECTANGULAR AND CIRCULAR GEOMETRIES

Each choice of “cylindrical” system ({, 1, z) engenders particu-
lar eigensolutions of (3a) and (3b) and hence particular TM and
TE modes (1), (2). In turn, these modes give rise to the respective
identities (7), (8), particularized to the special functions ap-
propriate for the problem at hand. In this section we concentrate
on the cases of rectangular (x, y) and circular (r,8) cross-sec-
tional geometry.

Case 1)

A —agx<a,—c<y<e

Ay —b<x<b,—c<y<c (bza).

The relevant identities are, after some manipulation,
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C4n-1/2) e

In the above relations n is a nonnegative integer, « is a parame-
ter with 0 < a <1, and & is the familiar Kronecker delta. In terms
of the physical variables, a=a /b.
Case 2)
A:0<r<r,0<0< 27
A,:0%

r<rn,0<0< 27 (n=n).

Here the underlying identities turn out to be
12 ’ ’ 2
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and
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=%+“1’Z';l52"2[52(<i’23]2 .
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In these sets of relations n is agam a nonneganve integer, a is a
parameter with 0 < a <1, J,(x) is the Bessel function of the first
kind of order n and argument x, Ji (x) is the derivative of

J,(x), and the x,, x; are the nontrivial (positive) zeros of J,(x)
and J!(x), respectively, naturally ordered. In terms of the physi-
cal variables, a=r /»,.

III. ANALYSIS OF THE RESULTS

The various ideritities are not all independent. For example,
(10b), (10d), (12b), and (12d) follow from (10a), (10c), (12a), and
(12¢), respectively, by differentiation -with respect to «. More-
over, (9) and (10) are consequences of (11c), (11d) and (12¢),
(12d) in the special cases n=+1/2.

Although perhaps unfamiliar, the identities of the previous
section do not actually represent new results. Equations (9a) and
(9b) are special cases of the more general identity

sinazsin(1-B)z = sin(kwa)sin( knf)
B S A A
zsinz k§1 k2a? — 22 (13)
with 0 < a < B <1. Equations (9¢) and (9d) similaily result from

® cos(k— 1/2)wacos(k—1/2ij
(k—-1/2)*a? - 2

cosazsin(l—B):z )
k=1

ZCO0S Z

(14)

again with 0 < a < B <1. The identities in (10) are all contained
in the infinite product expansions

) 72
sinz=zkI;I1 (1— nzwz) (15)
and
) 22
cosz= kl;[l (1 ey ) (16)

(see [1, p. 75), for example).
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In analogous fashion, underlying (11) are the more general
identities

’Z’J,f 2 (0BT~ A((82))
. i 1 Jv(axk)Jv‘(IBxk) >
LG mep 7Y@
and
2J,,’(ozz) , , y , '
Ez J,,’(Z) {J,,(BZ)Y;(Z)—J,,(Z)K,([?Z)}
> (x)" I (axi) 7 (Bx)
=72 )
L, ()= 2|02 [RGOT
(»>-1) (18)

both with 0 < & < B <1 (see [3], {8, p. 104], and {11, p. 499)). The
infinite product expansions

J(z) = I((/-2l~)1) fi[[ (:)—} (y>—1)" (19)
4% )_£2€‘2()V) klill[ Zk) } =0 20

incorporate the identities (12) (see [1, p. 370]). In (17)-(20) the
X, %} are the nontrivial (positive) zeros of the Bessel function
J,(x), and its derivative J;(x), respectively, naturally ordered.

The expressions (13), (14), (17), and (18) are important in their
own right. On the left-hand side of each identity appears a
Green’s function (or its derivative) associated with a particular
classical Sturm-Liouville problem. The right-hand sides are
mierely bilinear (Fourier) expansions of these Green’s functions
(or their derivatives) in terms of the eigenvalies and eigenfunc-
tions of the underlying homogeneous boundary-value problems
{4, p. 292, [9, pp. 213ff], [10, p. 415].) The relevant problems
are, respectively,

@) :1—)2)-+-22y=0 0<xxl
y(©0)=0
o y1)=0
@i J-i—zzy'=0 0<x<;1
) dc? .
dy(0
2O _,
dx
y@)=0
d?y
iii x2—5 +x— +(z22x*—1v)y=0 O<xxl
( ) d 2 d
y(0) bounded
, ¥ y=0
d
@iv) 2d—)i+x:1——+(zx —vz)y=0 0<xxl
x x
y'(0) bounded
ya=0

IV. SUMMARY

The analysis of eléctromagnetic wave propagation in “cylin-
drical” waveguides with step discontinuities leads naturally to
sets of unusual identities for various special functions. In this
paper we have discussed the expressions induced by classical
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rectangular and circular geometry and examined their relation-
ship to bilinear expansions for Green’s functions attendant to
familiar Sturm-Liouville boundary value problems. Other coor-
dinate systems and cross sections give rise to identities involving
Mathieu functions, confluent hypergeometric functions, and so
on. These topics are the subject of further investigation.
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Self-Consistent Finite /Infinite Element Scheme for
Unbounded Guided Wave Problems

KAZUYA HAYATA, MASASHI EGUCHI, AnD
MASANORI KOSHIBA, SENIOR MEMBER, IEEE

Abstract — An efficient finite-element approach for the eigenmode anal-
ysis of unbounded guided wave problems is described using decay-type
infinite elements. To determine an optimum set of decay parameters, two
algorithms based on successive approximation are presented and their
validity is checked via the application to an optical fiber problem.

I. INTRODUCTION

It is well recognized that difficulty is frequently encountered
when one wants to solve unbounded field problems using finite
elements. To overcome this difficulty, these unbounded domains
have in the past been dealt with in various ways, all of which
have strengths and weaknesses. To date the main methods in
guided wave problems have been simple truncation [1]-[4], the
use of analytical far-field solutions [5], the decay-type infinite
element approach [6], [7], the exterior finite element approach [8],
and the conformal mapping technique [9]. The simplest technique
among them is undoubtedly the simple truncation, in which the
unbounded domain is truncated to a finite size. However, this
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Fig. 1. Infinite elements.

technique involves a very large number of nodal points when the
field extends farther away from the guiding region. Among other
methods the decay-type infinite element approach, in which a
finite element is extended to infinity, is often simple and eco-
nomical and has now been applied successfully to a wide range of
problems [10], [11]. A pending question in applying this method
is the determination of unknown parameters involved which
represent decaying behavior in a far-field region. Although al-
most all of the authors to date have mentioned this problem, no
systematical algorithm for determining the decay parameters has
yet been developed [6], [7], [10], [11].

In this paper, a self-consistent finite /infinite element scheme
that can be used for the eigenmode analysis of unbounded
dielectric waveguide problems is developed. To determine the
decay parameters involved, two algorithms based on successive
approximation are proposed and their validity is examined by
means of the application to an optical fiber problem. By using
these algorithms, an optimum set of decay parameters is readily
obtainable in a self-consistent iterative way.

II. DETERMINATION OF AN OPTIMUM SET OF DECAY
PARAMETERS

Consider strip-like infinite elements shown in Fig. 1 and ex-
pand the field ¢ in each element as

¢={N}"{o}. (1)

where { N} is the shape function vector of the infinite elements
and { ¢}, is the nodal vector for each element.

As a trial function for semi-infinite directions, we choose the
following decay function:

(&) =exp{—c(§-4)"} @)

where ¢ is the unknown decay parameter and (§,£,,¢)=
(%, %, ), (¥, Y- @0,). If p is set to unity, (2) is reduced to the
exponential function [6], [7], [10], [11]; we choose p =1 in the
following description.

To determine systematically the best value of ¢, we propose
here the following two algorithms:

(T: transposition)

(¢c>0,p>0.5)

A. A Method Utilizing the Field Profile in a Finite Element Region

Fig. 2 shows a schematic illustration of a field profile on the
axes. We approximate the field ¢ near the points x,, y;, as

¢(x,0)=uoexp{—ax(x—x0)} (3)

¢(0,y) =erXP{”"v()"yo)}' 4

If we choose other points (x;, u;) and (y,,v;) corresponding to
the nodes in a finite element region, the unknown parameters
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