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Unusual Identities for Special Functions from

Waveguide Propagation Analyses

JAMES A. COCHRAN

Abstract —The analysis of electromagentic wave propagation in “cylin-

drical” waveguides with step discontinuities leads naturally to sets of

unusual identities for various speciaf functions. In this paper we con-

centrate on those expressions associated, with classicaf rectangular and

circular cross-seetiortaf geometry. From a mathematical point of view it

turns out, as expected, that the identities are related to bilinear expansions

for Green’s functions affiliated with familiar Stnrm-Liouville boundary-

value problems.

I. INTRODUCTION

The three-dimensional scalar wave equation is separable in 11

distinct coordinate systems [7]. Several of these, including rectan-

gular, cylindrical, elliptic, and parabolic, are of the form (f, q, z),

thereby allowing the ready analysis of electromagnetic propa-

gation in “cylindrical” waveguides having a general cross section

given by f({, q) = O. If k2 = Uzpc where, as usual, u is the

radian frequency of the assumed harmonic time dependence and

p and c are the permeability and permittivity of the homoge-

neous isotropic linear medium within the waveguides, then trans-

verse magnetic (TM) and transverse electric (TE) field solutions

have the well-known form [2, pp. 291 ff.], [5, pp. 171 ff.]

TM

~:= +iy~[grad Q({, q)]exp(tiymz).

EY = (hm)2@({,q)exp( *iF”z)

H:=O

with (ym)2 = k2 –(hm)2, and

TE

~~ = + iye[grad~({, q)]exp(+ iyez)

H:= (he)zV({, q)exp(t iy’z)

(1)

E:=() (2)

with (y’)* = k2 –’( he)2. In these expressions we assume that the

idealized boundmy condition of vanishing tangential electric field

on the waveguide wall ~({, q ) = O has been applied so that

@(J,q) and V({, q), respectively, are solutions of the

eigenvalue problems:

v*@+(hm)2g-o within waveguide

C?=o on waveguide wall

V* ’?+(JZ’)2S’=0 within waveguide

a~
—=
an

o on waveguide wall.

following

(3a)

(3b)
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The problems (3a) and (3b) are classical Sturm-Liouville ei-

genvalue problems [see [6, pp. 228 ff.], for example). If j({, q) = O

is a piecewise-smooth simple curve (a contour) enclosing a

bounded domain, each problem has a. countable infinity of posi-

tive eigenvalues. (We ignore the eigenvalue ( h’)2 = O since Jhe

c~rresponding eigenfunction is ~ = constant, which implies E =

H - O.) Indeed, when the eigenvalues associated with each prob-

lem are arranged in order of increasing size, that is,,,

o<(hf)2< (ll;)2<(h$)2< . . .

and

o<(h:)2< (hy)2<l[hy)2< . . .

it follows that

(li;)2<(hy)2

for each p=l,2,... andlimP+Q(hj)2 =limP+~(h~)2=co.

In our electromagnetic setting, the individual TM and TE

waves (modes) generated by the eigenfunctions of (3a) and (3b)

are independent, and their superposition leads to the most gen-

eral solution of Maxwell’s equations within the waveguide [2, p.

300]. Since

(y~e)2 =k2 -(h&. P)*

for a given frequency o only a finite number of modes of each

type are propagating. Whether propagating or evanescent, how-

ever, the transverse components of the modal fields satisfy the

familiar orthogonality relations

/
~p.~,dA=O (4a)

A

J
fi,p. fi;, dA = O (4b)

A

/( )
ZZ. E; xl?:q* dA=o. (4C)

A

In these expressions, @ designates lhe complex conjugate of ~

and the integration is performed over the entire two-dimensional

waveguide cross section A. If the waves are of the same type,

then p # q in (4a) and (4b). When p = q, the customary normal-

izations are [2, p. 300]

j lzl’~ = lYy12 (5)
A

and

/,@pl* &+*.
A

If two waveguides o! cross sections Al and A2, with Al C A2,

are joined in the pl~e z = constant, then, at the juncture, waves

in the first guide excite waves in the second guide (and con-

versely). Matching transverse fields in the “aperture” Al, we

have, using some obvious notation,

(lZ& = X~ a 22,: -k bpq2E:q
P9 -)

ljjm = ~
(

~ Cpq2gt: + d *@
[P P9 )rq . (6)

Here the coefficients a, b, c, d reprejent inner products between

individual modes in the two waveguides. For example,

I
1+

dpq = —
J

lEt; .*$* ,q dA.
~2P2 4
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Owing to the orthogonal character of the modes, and their and

normalizations, the representations (6) lead quite naturally to the

following set of identities: E 1 =*-+cot(nna) (lOa)

Z [ ap},a&12y:12 + 02P2~p,,~jM] = ~21.L2~pq
~=1 k2–n2a2

There is a related set of identities which arises from expressing

modes in the second guide in terms of modes in the first guide.

We begin with the analogue of (6) in which the roles of the guides

are reversed. This representation is uniformly valid at least over

the “aperture” ,41 and, in view of the relations (4) and (5), gives

rise to

z[*+-]l’YFY:l’+ ~2_A,’%’%!*dA
n ,,

= 12Yy12~pq

= ~2P2~pq (8)

These latter expressions have a slightly different character than

the relations (7) since ,41 c A2 and the modes in the first guide

do not generally constitute a basis for the modes in the second

guide over the whole of A2. In both (7) and (8), however, 8P~

represents the familiar Kronecker delta.

II. RECTANGULAR AND CIRCULAR GEOMETRIES

Each choice of “cylindrical” system (J’, q, z) engenders particu-

lar eigensolutions of (3a) and (3b) and hence particular TM and

TE modes (l), (2). In turn, these modes give rise to the respective

identities (7), (8), particularized to the special functions ap-

propriate for the problem at hand. In this section we concentrate

on the cases of rectangular (x, y) and circular (r, 0) cross-sec-

tional geometry.

Case 1)

Al:–a<x<a, –c<y<c

A2: -b<x<b, -c,<y<c (b>a).

The relevant identities are, after some manipulation,

~ sin’ (kma) (1- a)n28
x

—— . (9a)
~=1 k2a2 -- n’ 2a ‘0

sin’ ( km)

E —“g (n # O) (9b)
~=1 [k2~2– n’]’

(9C)

E 1 =-~+ficot(n~a)
k=l [k’–~’~’]’

T’
+—

4n2a2
csc’ ( n9ra) (lOb)

E 1

~-l (k–1/2)2–( n–1/2)2a2

77
——

2( n – 1/2) a
tan(n – 1/2) 7ra (1OC)

L 1

k=l [(k–1/’2)2-(n -l/2) 2a2]2

T’
. see’ ( n – 1/2) rra

4( n – l/2)2a’

T
— tan(n –1/2)7ra. (lOd)

4( n – l/2)3a3

In the above relations n is a nonnegative integer, a is a parame-

ter with O < a <1, and 8 is the familiar Kronecker delta. In terms

of the physical variables, a = a/b.

Case 2)

A’:O<r<r2,0<8<2n (r2>r1).

Here the underlying identities turn out to be

(x:)’ :
(xj)’ [1.T;((XX;) 2

k=l [(x; )2–(axj)2] [(x~)2–n2] J.(xi)

1
+:f — [1Jn(axk) 2

. 0
.k=l (q)’ -t’(%)

(ha)

(x:)’ ~
(xj)’ [1J;(cYx~) 2

k=, [(X;)’-(+)22 1 [(xi)’-n’] J,.(Xi)

_(x~)2-n2
—

4a4
(llb)

51
[1

Jn(axk) 2
=0 (llC)

k=l [(x, )’–(axk)’] z(w)

COS2( k – 1/2) %’a r’

‘[

(9d) (X,)2 ~
1

[1

JM(clxk) 2
=& (lld)

k=l (k–1/2)2a2 –(n–l/2)2]2 = 4(n–l\2)2a k=l [( X,)2–(CUA)2]’ ‘~(xk)
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and

E (x~)z _ 1 “(ax:) (12a)

k=l [( Xi)2–(dX~)2] [( Xi)2–n2] 2axf ~i’(~xf)

(ax:)* ~
(x~)’

,4=1 [(xf)*– (ax;) 2]2[(x~)2– n*]

[1

1 + (ax/)2–n’ Jn((xx; ) 2
. .

4
(12b)

4( ax; )2 J; ( ax; )

@J2k:1(X,)*:(.X)’-k:,(XL;:.*‘-%-
n

(12C)

(ax,)* f
(%)* (axi)2-n’

k=l [(xk)2–(axi)2]2= 4

[1
(aX,)* ~(axI) 2+(lzd)

+— —
4 Jn(axi)

In these sets of relations n is again a nonnegative integer,, a is a

par~eter with 0< a <1, J.(x) is the Bessel functiofi of the first

kind of order n and argument ,x, J;(x) is the derivative of

~,(x), and the xk, xi are the nontrivial (positive) zeros of ~. (x)

and ~~ ( x), respectively, naturally ordered. In terms of the physi-

cal variables, a = t-l /r2.

III. ANALYSIS OF THE 12ksuLTs

The various iileritities are not all independent. For example,

(lOb), (lOd), (12b), ~d (12d) follow from (Ida), (1OC), (12a), and

(12c), respectively, by differentiation -with respect to a, More-

over, (9) and (10) are consequences of (llc), (lld) imd (12c),

(12d) in the special cases n = + 1/2.

Although perhaps unfamiliar, @e identities of the previous

section do not actually represent new results. Equations (9a) and

(9b) are special cases of the more general identity

sinazsin(l–~)z m sin(k7ra)sin(k7r~)

“2X (13)
z sin z k-l

k*# – z’

with O < a < /3 g 1. Equations (9c) and (9d) sirniltily result from

cosaz sin(l– F)z m cos(k – 1/2) fiacos( k – 1/2) r~

=2Zz Cos z k=l (k -1/’2)2Tr2 - Z*

(14)

again with O g as /3s 1. The identities in (10) Me ~1 conttined

in the infinite product expansions

co Z2()sinz=z~ l–—
k=l

n2T2 (15)

and

( 22
Cosz=fi l–

(n - l/2)27r2 )

(16)
k-l

In analogous fashion, underlying (11) are the more general

identities

;-{ J,(&) ~(z) -JV(z)~(f3z)}
v

1 Jv(%) J.’(r%).2,: —= — (.>-1) (17)

k=l (x~) ‘z [J;(Xk)]2

and

q J’(Ixz)
–z’J----
2 ~;(z) {J:(Pz)E’(z) -J; (z) L’(Bz)}

(xf)’
s2~-

J;(axo J;(~x~)

k=, l[(xi)2-z’][(xo2 -vq [L(xi)]2

(v>-1) (18)

both yith 0< a <; /3s 1 (see [3], [8, p. 104], and [11, p. 499]). The

infinite product expansions

incorporate the identities (12) (see [1, p. 370]), In (17)–(20) the

x~, Xi me tie nontritid (positive) zeros of the Bessel function

~. ( x), and its derivative .J: ( x), respectively, naturally ordered.

The expressions (13), (14), (17), and (18) are irnportmt in their

own right. On the left-hand side (of each identity appears a

Green’s function (or its derivative) associated with a particular

classical Sturm-Liouville problem. The right-hand sides are

rtterely bilinear (Fourier) expansions of these Green’s functions

(or their derivatives) in terms of the eigenvalues and eigenfunc-

tions of the underlying homogeneous boundary-value problems

([4, P. 292], [9, PP. 213ff.],

are, respectively,

(i)

(ii)

(iii)

(iv)

d’y
—+-z*y=o
dx2

y(o) =0

[10, p. 415].) The relevant problems

y(1) =0

d2y ‘
—i-zy=o O<x<:l
dx2

~y(o) _.

dx
y(1) =0

d2y dy
x’—- +Xx +( Z2X2– l~2)j=o

dx 2
y(0) bounded

y(1) = o

d2y dy
X’zy + xx +(Z2X2 –lJ*)y=o

y’(0) bounded

y’(1) = o

IV. SUMMARY

O<x<l

O<x<l.

The analysis of electromagnetic wave propagation in “ cylin-

drical” waveguides with step disccntinuities leads naturally to

sets of unus&l identities for various special functions. In this

paper we have discussed the expressions induced by classical(see [1, p. 75], for example).
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rectangular and circular geometry and examined their relation-

ship to bilinear expansions for Green’s functions attendant to

familiar Sturm–Liouville boundary value problems. Other coor-

dinate systems and cross sections give rise to identities involving

Mathieu functions, confluent hypergeometric functions, and so

on. These topics are the subject of further investigation.
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Self-Consistent Finite/Infinite Element Scheme for

Unbounded Guided Wave Problems

KAZUYA HAYATA, MASASHI EGUCHI, AND

MASANORI KOSHIBA, SENIOR MEMBER, IEEE

Abstract —An efficient finite-element approach for the eigenmode anal-

ysis of unbounded guided wave problems is described using decay-type

infinite elements. To determine an optimum set of decay parameters, two

algorithms based on successive approximation are presented and their

valfdity is checked via the application to an optical fiber problem.

I. INTRODUCTION

It is well recogr@ed that difficulty is frequently encountered

when one wants to solve unbounded field problems using finite

elements. To overcome this difficulty, these unbounded domains

have in the past been dealt with in various ways, all of which

have strengths and weaknesses. To date the main methods in

guided wave problems have been simple truncation [1]-[4], the

use of analytical far-field solutions [5], the decay-type infinite

element approach [6], [7], the exterior finite element approach [8],

and the conformaf mapping technique [9]. The simplest technique

among them is undoubtedly the simple truncation, in which the

unbounded domain is truncated to a finite size. However, this
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Fig. 1. Infinite elements.

technique involves a very large number of nodal points when the

field extends farther away from the guiding region. Among other

methods the decay-type infinite element approach, in which a

finite element is extended to infinity, is often simple and eco-

nomical and has now been applied successfully to a wide range of

problems [10], [11]. A pending question in applying this method

is the determination of unknown parameters involved which

represent decaying behavior in a far-field region. Although al-

most all of the authors to date have mentioned this problem, no

systematical algorithm for determining the decay parameters has

yet been developed [6], [7], [10], [11].

In this paper, a self-consistent finite/infinite element scheme

that can be- used for the eigenmode analysis of unbounded

dielectric waveguide problems is developed. To determine the

decay parameters involved, two algorithms based on successive

approximation are proposed and their validity is examined by

means of the application to an optical fiber problem. By using

these algorithms, an optimum set of decay parameters is readily

obtainable in a self-consistent iterative way.

II. DETERMJNATION OF AN OPTIMUM SET OF DECAY

PARAMETERS

Consider strip-like infinite elements shown in Fig. 1 and ex-

pand the field $ in each element as

+= {~}’{+}= (T: transposition) (1)

where { N } is the shape function vector of the infinite elements

and {@}, is the nodal vector for each element.

As a trial function for semi-infinite directions, we choose the

following decay function:

f(f; c)=exp{-c(f-~o)p} (c>o,p>o.5) (2)

where c is the unknown decay parameter and ($, .$O,c) =

(x, Xo, aX), (y, -yO,a,,). If p is set to unity, (2) is reduced to the

exponential function [6], [7], [10], [11]; we choose p = 1 in the

following description.

To determine systematically the best value of c, we propose

here the following two algorithms:

A. A Method Utilizing the Field Profile in a Finite Element Region

Fig. 2 shows a schematic illustration of a field profile on the

axes. We approximate the field ~ near the points X., yO as

@(x, O)=uoexp {–aX(x–xO)} (3)

~(o,.v)=uoexp{-~,(y-ye)}. (4)

If we choose other points (xl, U1) and ( yl, VI ) corresponding to

the nodes in a finite element region, the unknown parameters
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